Tourism and Big Data: Forecasting with Hierarchical and Sequential Cluster Analysis
Abstract
A new Big Data cluster method was developed to forecast the hotel accommodation market. The simulation and training of time series data are from January 2008 to December 2019 for the Spanish case. Applying the Hierarchical and Sequential Clustering Analysis method represents an improvement in forecasting modelling of the Big Data literature. The model is presented to obtain better explanatory and forecasting capacity than models used by Google data sources. Furthermore, the model allows knowledge of the tourists’ search on the internet profiles before their hotel reservation. With the information obtained, stakeholders can make decisions efficiently. The Matrix U1 Theil was used to establish a dynamic forecasting comparison. View Full-Text
Keywords: Big Data; forecasting; Google Trends; cluster
Comments